High-Order Numerical Methods for Maxwell's Equations on Unstructured Meshes
نویسنده
چکیده
For more than fifteen years, spectral finite elements (i.e. finite element methods on hexahedral meshes with mass-lumping) showed their efficiency to model the propagation of acoustic and elastic waves in the time domain, in particular in terms of accuracy. Moreover, their mixed formulation [1] dramatically increases their efficiency in terms of storage and computational time. This approach, which used initially continuous elements for acoustics and linear elastodynamics, has been recently extended to discontinuous Galerkin methods in order to solve Maxwell's equations in the time domain [2] as well as to the first family of edge elements fot the time-harmonic problem [3]. ln our talk, we justify, in a first part, the different options we selected for our approximations. ln particular, we show that the gain realized by using spectral elements in their mixed formulation. ln a second part, we present the different spectral elements we used for solving Maxwell's equations and the strong and weak points of each method are discussed in order to point out the optimal choice for each kind of problem. Finally, numerical experiments which show the performance of the methods are provided and sorne comparisons with FDTD are given.
منابع مشابه
Pressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملConvergence analysis of a covolume scheme for Maxwell's equations in three dimensions
This paper contains error estimates for covolume discretizations of Maxwell’s equations in three space dimensions. Several estimates are proved. First, an estimate for a semi-discrete scheme is given. Second, the estimate is extended to cover the classical interlaced time marching technique. Third, some of our unstructured mesh results are specialized to rectangular meshes, both uniform and non...
متن کاملMultigrid methods for two-dimensional Maxwell's equations on graded meshes
In this work we investigate the numerical solution for two-dimensional Maxwell’s equations on graded meshes. The approach is based on the Hodge decomposition. The solution u of Maxwell’s equations is approximated by solving standard second order elliptic problems. Quasi-optimal error estimates for both u and ∇ × u in the L2 norm are obtained on graded meshes. We prove the uniform convergence of...
متن کاملHigher-order mimetic methods for unstructured meshes
A higher-order mimetic method for the solution of partial differential equations on unstructured meshes is developed and demonstrated on the problem of conductive heat transfer. Mimetic discretization methods create discrete versions of the partial differential operators (such and the gradient and divergence) that are exact in some sense and therefore mimic the important mathematical properties...
متن کاملMulti-dimensional Optimal Order Detection (MOOD) - A very high-order Finite Volume Scheme for conservation laws on unstructured meshes
TheMulti-dimensional Optimal Order Detection (MOOD) method is an original Very High-Order Finite Volume (FV) method for conservation laws on unstructured meshes. The method is based on an a posteriori degree reduction of local polynomial reconstructions on cells where prescribed stability conditions are not fulfilled. Numerical experiments on advection and Euler equations problems are drawn to ...
متن کامل